12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- # -------------------------------------------------------------------------
- # Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
- #
- # NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual
- # property and proprietary rights in and to this software, related
- # documentation and any modifications thereto. Any use, reproduction,
- # disclosure or distribution of this software and related documentation
- # without an express license agreement from NVIDIA CORPORATION is strictly
- # prohibited.
- #
- # Written by Jiarui Xu
- # -------------------------------------------------------------------------
- # Modified by Jilan Xu
- # -------------------------------------------------------------------------
- from mmseg.datasets import DATASETS, CustomDataset
- @DATASETS.register_module()
- class COCOStufferDataset(CustomDataset):
- """COCO-Stuff dataset.
- 1 bg class + 80 things + 91 stuff classes from the COCO-Stuff dataset.
- """
- CLASSES = ('background','person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
- 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
- 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
- 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife',
- 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
- 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
- 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner',
- 'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet', 'cage', 'cardboard', 'carpet', 'ceiling-other', 'ceiling-tile',
- 'cloth', 'clothes', 'clouds', 'counter', 'cupboard', 'curtain', 'desk-stuff', 'dirt', 'door-stuff', 'fence', 'floor-marble',
- 'floor-other', 'floor-stone', 'floor-tile', 'floor-wood', 'flower', 'fog', 'food-other', 'fruit', 'furniture-other', 'grass',
- 'gravel', 'ground-other', 'hill', 'house', 'leaves', 'light', 'mat', 'metal', 'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin',
- 'net', 'paper', 'pavement', 'pillow', 'plant-other', 'plastic', 'platform', 'playingfield', 'railing', 'railroad', 'river', 'road',
- 'rock', 'roof', 'rug', 'salad', 'sand', 'sea', 'shelf', 'sky-other', 'skyscraper', 'snow', 'solid-other', 'stairs', 'stone', 'straw',
- 'structural-other', 'table', 'tent', 'textile-other', 'towel', 'tree', 'vegetable', 'wall-brick', 'wall-concrete', 'wall-other', 'wall-panel',
- 'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'waterdrops', 'window-blind', 'window-other', 'wood')
- PALETTE = [[0, 0, 0], [0, 192, 64], [0, 192, 64], [0, 64, 96], [128, 192, 192], [0, 64, 64], [0, 192, 224],
- [0, 192, 192], [128, 192, 64], [0, 192, 96], [128, 192, 64], [128, 32, 192], [0, 0, 224], [0, 0, 64],
- [0, 160, 192], [128, 0, 96], [128, 0, 192], [0, 32, 192], [128, 128, 224], [0, 0, 192], [128, 160, 192],
- [128, 128, 0], [128, 0, 32], [128, 32, 0], [128, 0, 128], [64, 128, 32], [0, 160, 0], [0, 0, 0],
- [192, 128, 160], [0, 32, 0], [0, 128, 128], [64, 128, 160], [128, 160, 0], [0, 128, 0], [192, 128, 32],
- [128, 96, 128], [0, 0, 128], [64, 0, 32], [0, 224, 128], [128, 0, 0], [192, 0, 160], [0, 96, 128],
- [128, 128, 128], [64, 0, 160], [128, 224, 128], [128, 128, 64], [192, 0, 32],
- [128, 96, 0], [128, 0, 192], [0, 128, 32], [64, 224, 0], [0, 0, 64], [128, 128, 160], [64, 96, 0],
- [0, 128, 192], [0, 128, 160], [192, 224, 0], [0, 128, 64], [128, 128, 32], [192, 32, 128], [0, 64, 192],
- [0, 0, 32], [64, 160, 128], [128, 64, 64], [128, 0, 160], [64, 32, 128], [128, 192, 192], [0, 0, 160],
- [192, 160, 128], [128, 192, 0], [128, 0, 96], [192, 32, 0], [128, 64, 128], [64, 128, 96], [64, 160, 0],
- [0, 64, 0], [192, 128, 224], [64, 32, 0], [0, 192, 128], [64, 128, 224], [192, 160, 0],
- [1, 0, 0], [1, 0, 1], [1, 0, 2], [1, 0, 3], [1, 0, 4], [1, 0, 5], [1, 0, 6], [1, 0, 7], [1, 0, 8], [1, 0, 9], [1, 0, 10], [1, 0, 11], [1, 0, 12], [1, 0, 13], [1, 0, 14], [1, 0, 15], [1, 0, 16], [1, 0, 17], [1, 0, 18], [1, 0, 19], [1, 0, 20], [1, 0, 21], [1, 0, 22], [1, 0, 23], [1, 0, 24], [1, 0, 25], [1, 0, 26], [1, 0, 27], [1, 0, 28], [1, 0, 29], [1, 0, 30], [1, 0, 31], [1, 0, 32], [1, 0, 33], [1, 0, 34], [1, 0, 35], [1, 0, 36], [1, 0, 37], [1, 0, 38], [1, 0, 39], [1, 0, 40], [1, 0, 41], [1, 0, 42], [1, 0, 43], [1, 0, 44], [1, 0, 45], [1, 0, 46], [1, 0, 47], [1, 0, 48], [1, 0, 49], [1, 0, 50], [1, 0, 51], [1, 0, 52], [1, 0, 53], [1, 0, 54], [1, 0, 55], [1, 0, 56], [1, 0, 57], [1, 0, 58], [1, 0, 59], [1, 0, 60], [1, 0, 61], [1, 0, 62], [1, 0, 63], [1, 0, 64], [1, 0, 65], [1, 0, 66], [1, 0, 67], [1, 0, 68], [1, 0, 69], [1, 0, 70], [1, 0, 71], [1, 0, 72], [1, 0, 73], [1, 0, 74], [1, 0, 75], [1, 0, 76], [1, 0, 77], [1, 0, 78], [1, 0, 79], [1, 0, 80], [1, 0, 81], [1, 0, 82], [1, 0, 83], [1, 0, 84], [1, 0, 85], [1, 0, 86], [1, 0, 87], [1, 0, 88], [1, 0, 89], [1, 0, 90],
- ]
- def __init__(self, **kwargs):
- super(COCOStufferDataset, self).__init__(img_suffix='.jpg', seg_map_suffix='_instanceTrainIds.png', **kwargs)
|