123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- # -------------------------------------------------------------------------
- # MIT License
- #
- # Copyright (c) 2021 OpenAI
- #
- # Permission is hereby granted, free of charge, to any person obtaining a copy
- # of this software and associated documentation files (the "Software"), to deal
- # in the Software without restriction, including without limitation the rights
- # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- # copies of the Software, and to permit persons to whom the Software is
- # furnished to do so, subject to the following conditions:
- #
- # The above copyright notice and this permission notice shall be included in all
- # copies or substantial portions of the Software.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- #
- # Modified by Jiarui Xu
- # -------------------------------------------------------------------------
- from collections import OrderedDict
- import torch
- from torch import nn
- class QuickGELU(nn.Module):
- def forward(self, x: torch.Tensor):
- return x * torch.sigmoid(1.702 * x)
- class ResidualAttentionBlock(nn.Module):
- def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
- super().__init__()
- self.attn = nn.MultiheadAttention(d_model, n_head)
- self.ln_1 = nn.LayerNorm(d_model)
- self.mlp = nn.Sequential(OrderedDict([
- ('c_fc', nn.Linear(d_model, d_model * 4)),
- ('gelu', QuickGELU()),
- ('c_proj', nn.Linear(d_model * 4, d_model))]))
- self.ln_2 = nn.LayerNorm(d_model)
- self.attn_mask = attn_mask
- def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor):
- self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
- return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, key_padding_mask=key_padding_mask)[0]
- def forward(self, x: torch.Tensor, key_padding_mask=None):
- x = x + self.attention(self.ln_1(x), key_padding_mask=key_padding_mask)
- x = x + self.mlp(self.ln_2(x))
- return x
|