1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- import os
- import os.path as op
- import torch
- import numpy as np
- import random
- import time
- from datasets import build_dataloader
- from processor.processor import do_train
- from utils.checkpoint import Checkpointer
- from utils.iotools import save_train_configs
- from utils.logger import setup_logger
- from solver import build_optimizer, build_lr_scheduler
- from model import build_model
- from utils.metrics import Evaluator
- from utils.options import get_args
- from utils.comm import get_rank, synchronize
- def set_seed(seed=0):
- torch.manual_seed(seed)
- torch.cuda.manual_seed(seed)
- torch.cuda.manual_seed_all(seed)
- np.random.seed(seed)
- random.seed(seed)
- torch.backends.cudnn.deterministic = True
- torch.backends.cudnn.benchmark = True
- if __name__ == '__main__':
- args = get_args()
- set_seed(1+get_rank())
- name = args.name
- num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
- args.distributed = num_gpus > 1
- if args.distributed:
- torch.cuda.set_device(args.local_rank)
- torch.distributed.init_process_group(backend="nccl", init_method="env://")
- synchronize()
-
- device = "cuda"
- cur_time = time.strftime("%Y%m%d_%H%M%S", time.localtime())
- args.output_dir = op.join(args.output_dir, args.dataset_name, f'{cur_time}_{name}')
- logger = setup_logger('IRRA', save_dir=args.output_dir, if_train=args.training, distributed_rank=get_rank())
- logger.info("Using {} GPUs".format(num_gpus))
- logger.info(str(args).replace(',', '\n'))
- save_train_configs(args.output_dir, args)
- # get image-text pair datasets dataloader
- train_loader, val_img_loader, val_txt_loader, num_classes = build_dataloader(args)
- model = build_model(args, num_classes)
- logger.info('Total params: %2.fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0))
- model.to(device)
- if args.distributed:
- model = torch.nn.parallel.DistributedDataParallel(
- model,
- device_ids=[args.local_rank],
- output_device=args.local_rank,
- # this should be removed if we update BatchNorm stats
- broadcast_buffers=False,
- )
- optimizer = build_optimizer(args, model)
- scheduler = build_lr_scheduler(args, optimizer)
- is_master = get_rank() == 0
- checkpointer = Checkpointer(model, optimizer, scheduler, args.output_dir, is_master)
- evaluator = Evaluator(val_img_loader, val_txt_loader)
- start_epoch = 1
- if args.resume:
- checkpoint = checkpointer.resume(args.resume_ckpt_file)
- start_epoch = checkpoint['epoch']
- do_train(start_epoch, args, model, train_loader, evaluator, optimizer, scheduler, checkpointer)
|