123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- # -------------------------------------------------------------------------
- # MIT License
- #
- # Copyright (c) 2021 OpenAI
- #
- # Permission is hereby granted, free of charge, to any person obtaining a copy
- # of this software and associated documentation files (the "Software"), to deal
- # in the Software without restriction, including without limitation the rights
- # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- # copies of the Software, and to permit persons to whom the Software is
- # furnished to do so, subject to the following conditions:
- #
- # The above copyright notice and this permission notice shall be included in all
- # copies or substantial portions of the Software.
- #
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- # SOFTWARE.
- #
- # Modified by Jiarui Xu
- # -------------------------------------------------------------------------
- import torch
- import torch.utils.checkpoint as checkpoint
- from torch import nn
- from .builder import MODELS
- from .misc import Result
- from .utils import ResidualAttentionBlock
- class Transformer(nn.Module):
- def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, use_checkpoint=False):
- super().__init__()
- self.width = width
- self.layers = layers
- self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
- proj_std = (self.width**-0.5) * ((2 * self.layers)**-0.5)
- attn_std = self.width**-0.5
- fc_std = (2 * self.width)**-0.5
- for block in self.resblocks:
- nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
- nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
- nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
- nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
- self.use_checkpoint = use_checkpoint
- def forward(self, x: torch.Tensor):
- for resblock in self.resblocks:
- if self.use_checkpoint:
- x = checkpoint.checkpoint(resblock, x)
- else:
- x = resblock(x)
- return x
- @MODELS.register_module()
- class TextTransformer(nn.Module):
- def __init__(
- self,
- context_length: int,
- width: int,
- layers: int,
- vocab_size,
- use_checkpoint=False,
- ):
- super().__init__()
- heads = width // 64
- self.context_length = context_length
- self.width = width
- self.transformer = Transformer(
- width=width,
- layers=layers,
- heads=heads,
- attn_mask=self.build_attention_mask(),
- use_checkpoint=use_checkpoint)
- self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
- self.ln_final = nn.LayerNorm(width)
- self.token_embedding = nn.Embedding(vocab_size, width)
- nn.init.normal_(self.token_embedding.weight, std=0.02)
- # initialization
- nn.init.normal_(self.positional_embedding, std=0.01)
- def build_attention_mask(self):
- # lazily create causal attention mask, with full attention between the vision tokens
- # pytorch uses additive attention mask; fill with -inf
- mask = torch.empty(self.context_length, self.context_length)
- mask.fill_(float('-inf'))
- mask.triu_(1) # zero out the lower diagonal
- return mask
- def forward(self, text, *, as_dict=False):
- x = self.token_embedding(text)
- outs = Result(as_dict=as_dict)
- x = x + self.positional_embedding
- x = x.permute(1, 0, 2) # NLD -> LND
- x = self.transformer(x)
- x = x.permute(1, 0, 2) # LND -> NLD
- x = self.ln_final(x)
- # x.shape = [batch_size, n_ctx, transformer.width]
- # take features from the eot embedding (eot_token is the highest number in each sequence)
- x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
- outs.append(x, name='x')
- return outs.as_return()
|