12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- from torch.utils.data.sampler import Sampler
- from collections import defaultdict
- import copy
- import random
- import numpy as np
- class RandomIdentitySampler(Sampler):
- """
- Randomly sample N identities, then for each identity,
- randomly sample K instances, therefore batch size is N*K.
- Args:
- - data_source (list): list of (img_path, pid, camid).
- - num_instances (int): number of instances per identity in a batch.
- - batch_size (int): number of examples in a batch.
- """
- def __init__(self, data_source, batch_size, num_instances):
- self.data_source = data_source
- self.batch_size = batch_size
- self.num_instances = num_instances
- self.num_pids_per_batch = self.batch_size // self.num_instances
- self.index_dic = defaultdict(list) #dict with list value
- #{783: [0, 5, 116, 876, 1554, 2041],...,}
- for index, (pid, _, _, _) in enumerate(self.data_source):
- self.index_dic[pid].append(index)
- self.pids = list(self.index_dic.keys())
- # estimate number of examples in an epoch
- self.length = 0
- for pid in self.pids:
- idxs = self.index_dic[pid]
- num = len(idxs)
- if num < self.num_instances:
- num = self.num_instances
- self.length += num - num % self.num_instances
- def __iter__(self):
- batch_idxs_dict = defaultdict(list)
- for pid in self.pids:
- idxs = copy.deepcopy(self.index_dic[pid])
- if len(idxs) < self.num_instances:
- idxs = np.random.choice(idxs, size=self.num_instances, replace=True)
- random.shuffle(idxs)
- batch_idxs = []
- for idx in idxs:
- batch_idxs.append(idx)
- if len(batch_idxs) == self.num_instances:
- batch_idxs_dict[pid].append(batch_idxs)
- batch_idxs = []
- avai_pids = copy.deepcopy(self.pids)
- final_idxs = []
- while len(avai_pids) >= self.num_pids_per_batch:
- selected_pids = random.sample(avai_pids, self.num_pids_per_batch)
- for pid in selected_pids:
- batch_idxs = batch_idxs_dict[pid].pop(0)
- final_idxs.extend(batch_idxs)
- if len(batch_idxs_dict[pid]) == 0:
- avai_pids.remove(pid)
- return iter(final_idxs)
- def __len__(self):
- return self.length
|