123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- import os.path as op
- from typing import List
- from utils.iotools import read_json
- from .bases import BaseDataset
- class CUHKPEDES(BaseDataset):
- """
- CUHK-PEDES
- Reference:
- Person Search With Natural Language Description (CVPR 2017)
- URL: https://openaccess.thecvf.com/content_cvpr_2017/html/Li_Person_Search_With_CVPR_2017_paper.html
- Dataset statistics:
- ### identities: 13003
- ### images: 40206, (train) (test) (val)
- ### captions:
- ### 9 images have more than 2 captions
- ### 4 identity have only one image
- annotation format:
- [{'split', str,
- 'captions', list,
- 'file_path', str,
- 'processed_tokens', list,
- 'id', int}...]
- """
- dataset_dir = 'CUHK-PEDES'
- def __init__(self, root='', verbose=True):
- super(CUHKPEDES, self).__init__()
- self.dataset_dir = op.join(root, self.dataset_dir)
- self.img_dir = op.join(self.dataset_dir, 'imgs/')
- self.anno_path = op.join(self.dataset_dir, 'reid_raw.json')
- self._check_before_run()
- self.train_annos, self.test_annos, self.val_annos = self._split_anno(self.anno_path)
- self.train, self.train_id_container = self._process_anno(self.train_annos, training=True)
- self.test, self.test_id_container = self._process_anno(self.test_annos)
- self.val, self.val_id_container = self._process_anno(self.val_annos)
- if verbose:
- self.logger.info("=> CUHK-PEDES Images and Captions are loaded")
- self.show_dataset_info()
- def _split_anno(self, anno_path: str):
- train_annos, test_annos, val_annos = [], [], []
- annos = read_json(anno_path)
- for anno in annos:
- if anno['split'] == 'train':
- train_annos.append(anno)
- elif anno['split'] == 'test':
- test_annos.append(anno)
- else:
- val_annos.append(anno)
- return train_annos, test_annos, val_annos
-
- def _process_anno(self, annos: List[dict], training=False):
- pid_container = set()
- if training:
- dataset = []
- image_id = 0
- for anno in annos:
- pid = int(anno['id']) - 1 # make pid begin from 0
- pid_container.add(pid)
- img_path = op.join(self.img_dir, anno['file_path'])
- captions = anno['captions'] # caption list
- for caption in captions:
- dataset.append((pid, image_id, img_path, caption))
- image_id += 1
- for idx, pid in enumerate(pid_container):
- # check pid begin from 0 and no break
- assert idx == pid, f"idx: {idx} and pid: {pid} are not match"
- return dataset, pid_container
- else:
- dataset = {}
- img_paths = []
- captions = []
- image_pids = []
- caption_pids = []
- for anno in annos:
- pid = int(anno['id'])
- pid_container.add(pid)
- img_path = op.join(self.img_dir, anno['file_path'])
- img_paths.append(img_path)
- image_pids.append(pid)
- caption_list = anno['captions'] # caption list
- for caption in caption_list:
- captions.append(caption)
- caption_pids.append(pid)
- dataset = {
- "image_pids": image_pids,
- "img_paths": img_paths,
- "caption_pids": caption_pids,
- "captions": captions
- }
- return dataset, pid_container
- def _check_before_run(self):
- """Check if all files are available before going deeper"""
- if not op.exists(self.dataset_dir):
- raise RuntimeError("'{}' is not available".format(self.dataset_dir))
- if not op.exists(self.img_dir):
- raise RuntimeError("'{}' is not available".format(self.img_dir))
- if not op.exists(self.anno_path):
- raise RuntimeError("'{}' is not available".format(self.anno_path))
|