|
há 3 anos atrás | |
---|---|---|
configs | há 3 anos atrás | |
convert_dataset | há 3 anos atrás | |
datasets | há 3 anos atrás | |
demo | há 3 anos atrás | |
figs | há 3 anos atrás | |
models | há 3 anos atrás | |
segmentation | há 3 anos atrás | |
tools | há 3 anos atrás | |
utils | há 3 anos atrás | |
LICENSE | há 3 anos atrás | |
README.md | há 3 anos atrás | |
main_group_vit.py | há 3 anos atrás | |
main_seg.py | há 3 anos atrás | |
setup.cfg | há 3 anos atrás |
This repository is the official implementation for GroupViT introduced in the paper:
GroupViT: Semantic Segmentation Emerges from Text Supervision
Jiarui Xu,
Shalini De Mello,
Wonmin Byeon,
Thomas Breuel,
Jan Kautz,
Xiaolong Wang
CVPR 2022
The project page with examples is at https://jerryxu.net/GroupViT/.
If you find our work useful in your research, please cite:
@article{xu2022groupvit,
author = {Xu, Jiarui and De Mello, Shalini and Liu, Sifei and Byeon, Wonmin and Breuel, Thomas and Kautz, Jan and Wang, Xiaolong},
title = {GroupViT: Semantic Segmentation Emerges from Text Supervision},
journal = {arXiv preprint arXiv:2202.11094},
year = {2022},
}
Quick start full script:
conda create -n groupvit python=3.7 -y
conda activate groupvit
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge
pip install mmcv-full==1.3.14 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
pip install mmsegmentation==0.18.0
pip install webdataset==0.1.103
pip install timm==0.4.12
git clone https://github.com/NVIDIA/apex
cd && apex && pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
pip install opencv-python==4.4.0.46 termcolor==1.1.0 diffdist einops omegaconf
pip install nltk ftfy regex tqdm
Integrated into Huggingface Spaces 🤗 using Gradio. Try out the web demo:
To run demo from command line:
python demo/demo_seg.py --cfg configs/group_vit_gcc_yfcc_30e.yml --resume /path/to/checkpoint --vis input_pred_label final_group --input demo/examples/voc.jpg --output_dir demo/output
The output is saved in demo/output/
.
Zero-shot Classification | Zero-shot Segmentation | |||
---|---|---|---|---|
config | ImageNet | Pascal VOC | Pascal Context | COCO |
cfg | 43.7 | 52.3 | 22.4 | 24.3 |
cfg | 51.6 | 50.8 | 23.7 | 27.5 |
You may download pre-trained weights group_vit_gcc_yfcc_30e-879422e0.pth
and group_vit_gcc_redcap_30e-3dd09a76.pth
from Jiarui Xu's Github.
./tools/dist_launch.sh main_group_vit.py /path/to/config 8 --resume /path/to/checkpoint --eval
./tools/dist_launch.sh main_seg.py /path/to/config 8 --resume /path/to/checkpoint
./tools/dist_launch.sh main_seg.py /path/to/config 8 --resume /path/to/checkpoint --opts evaluate.seg.cfg=segmentation/configs/_base_/datasets/pascal_context.py
./tools/dist_launch.sh main_seg.py /path/to/config 8 --resume /path/to/checkpoint --opts evaluate.seg.cfg=segmentation/configs/_base_/datasets/coco.py
During training, we use webdataset for scalable data loading. To convert image text pairs into webdataset format, we use the img2dataset tool to download and preprocess the dataset.
For inference, we use mmsegmentation for semantic segmentation testing, evaluation and visualization on Pascal VOC, Pascal Context and COCO datasets.
The overall file structure is as follows:
GroupViT
├── local_data
│ ├── gcc3m_shards
│ │ ├── gcc-train-000000.tar
│ │ ├── ...
│ │ ├── gcc-train-000436.tar
│ ├── gcc12m_shards
│ │ ├── gcc-conceptual-12m-000000.tar
│ │ ├── ...
│ │ ├── gcc-conceptual-12m-001943.tar
│ ├── yfcc14m_shards
│ │ ├── yfcc14m-000000.tar
│ │ ├── ...
│ │ ├── yfcc14m-001888.tar
│ ├── redcap12m_shards
│ │ ├── redcap12m-000000.tar
│ │ ├── ...
│ │ ├── redcap12m-001211.tar
│ ├── imagenet_shards
│ │ ├── imagenet-val-000000.tar
│ │ ├── ...
│ │ ├── imagenet-val-000049.tar
│ ├── VOCdevkit
│ │ ├── VOC2012
│ │ │ ├── JPEGImages
│ │ │ ├── SegmentationClass
│ │ │ ├── ImageSets
│ │ │ │ ├── Segmentation
│ │ ├── VOC2010
│ │ │ ├── JPEGImages
│ │ │ ├── SegmentationClassContext
│ │ │ ├── ImageSets
│ │ │ │ ├── SegmentationContext
│ │ │ │ │ ├── train.txt
│ │ │ │ │ ├── val.txt
│ │ │ ├── trainval_merged.json
│ │ ├── VOCaug
│ │ │ ├── dataset
│ │ │ │ ├── cls
│ ├── coco
│ │ ├── images
│ │ │ ├── train2017
│ │ │ ├── val2017
│ │ ├── annotations
│ │ │ ├── train2017
│ │ │ ├── val2017
The instructions for preparing each dataset are as followed.
Please download the training split annotation file from Conceptual Caption 12M and name it to gcc3m.tsv
.
Then run img2dataset
to download the image text pairs and save in webdataset format.
sed -i '1s/^/caption\turl\n/' gcc3m.tsv
img2dataset --url_list gcc3m.tsv --input_format "tsv" \
--url_col "url" --caption_col "caption" --output_format webdataset\
--output_folder local_data/gcc3m_shards
--processes_count 16 --thread_count 64
--image_size 512 --resize_mode keep_ratio --resize_only_if_bigger True \
--enable_wandb True --save_metadata False --oom_shard_count 6
rename -d 's/^/gcc-train-/' local_data/gcc3m_shards/*
Please refer to img2dataset CC3M tutorial for details.
Please download the annotation file from Conceptual Caption 12M and name it to gcc12m.tsv
.
Then run img2dataset
to download the image text pairs and save in webdataset format.
sed -i '1s/^/caption\turl\n/' gcc12m.tsv
img2dataset --url_list gcc12m.tsv --input_format "tsv" \
--url_col "url" --caption_col "caption" --output_format webdataset\
--output_folder local_data/gcc12m_shards \
--processes_count 16 --thread_count 64
--image_size 512 --resize_mode keep_ratio --resize_only_if_bigger True \
--enable_wandb True --save_metadata False --oom_shard_count 6
rename -d 's/^/gcc-conceptual-12m-/' local_data/gcc12m_shards/*
Please refer to img2dataset CC12M tutorial for details.
Please run following CLIP Data Preparation to download YFCC14M subset.
wget https://openaipublic.azureedge.net/clip/data/yfcc100m_subset_data.tsv.bz2
bunzip2 yfcc100m_subset_data.tsv.bz2
Then run preprocessing script to create subset sql db and annotation tsv file (may take a while).
python convert_dataset/create_subset.py --input-dir . --output-dir . --subset yfcc100m_subset_data.tsv
This script will create two files: SQLite db yfcc100m_dataset.sql
and annotation tsv file yfcc14m_dataset.tsv
.
Then follow YFCC100M Download Instruction to download the dataset and meta file.
pip install git+https://gitlab.com/jfolz/yfcc100m.git
mkdir -p yfcc100m_meta
python -m yfcc100m.convert_metadata . -o yfcc100m_meta --skip_verification
mkdir -p yfcc100m_zip
python -m yfcc100m.download yfcc100m_meta -o yfcc100m_zip
Finally convert dataset into webdataset format.
python convert_dataset/convert_yfcc14m.py --root yfcc100m_zip --info yfcc14m_dataset.tsv --shards yfcc14m_shards
Please download the annotation file from RedCaps.
wget https://www.dropbox.com/s/cqtdpsl4hewlli1/redcaps_v1.0_annotations.zip?dl=1
unzip redcaps_v1.0_annotations.zip
Then run preprocessing script and img2dataset
to download the image text pairs and save in webdataset format.
python convert_dataset/process_redcaps.py annotations redcaps12m_meta/redcaps12m.parquet --num-split 16
img2dataset --url_list ~/data/redcaps12m/ --input_format "parquet" \
--url_col "URL" --caption_col "TEXT" --output_format webdataset \
--output_folder local_data/recaps12m_shards
--processes_count 16 --thread_count 64
--image_size 512 --resize_mode keep_ratio --resize_only_if_bigger True \
--enable_wandb True --save_metadata False --oom_shard_count 6
rename -d 's/^/redcap12m-/' local_data/recaps12m_shards/*
Please follow webdataset ImageNet Example to convert ImageNet into webdataset format.
Please follow MMSegmentation Pascal VOC Preparation to download and setup the Pascal VOC dataset.
Please refer to MMSegmentation Pascal Context Preparation to download and setup the Pascal Context dataset.
COCO dataset is an object detection dataset with instance segmentation annotations. To evaluate GroupViT, we combine all the instance masks together and generate semantic segmentation maps. To generate the semantic segmentation maps, please follow MMSegmentation's documentation to download the COCO-Stuff-164k dataset first, then run following
python convert_dataset/convert_coco.py local_data/data/coco/ -o local_data/data/coco/
Train on single node:
(node0)$ ./tools/dist_train.sh /path/to/config $GPUS_PER_NODE
For example, to train on a node with 8 GPUs, run:
(node0)$ ./tools/dist_train.sh configs/group_vit_gcc_yfcc_30e.yml 8
Train on multiple nodes:
(node0)$ ./tools/dist_mn_train.sh /path/to/config $NUM_NODES $NODE_RANK $GPUS_PER_NODE $MASTER_ADDR
(node1)$ ./tools/dist_mn_train.sh /path/to/config $NUM_NODES $NODE_RANK $GPUS_PER_NODE $MASTER_ADDR
For example, to train on two nodes with 8 GPUs each, run:
(node0)$ ./tools/dist_mn_train.sh configs/group_vit_gcc_yfcc_30e.yml 0 2 8 tcp://node0
(node1)$ ./tools/dist_mn_train.sh configs/group_vit_gcc_yfcc_30e.yml 1 2 8 tcp://node0
We use 16 GPUs for pre-training in our paper.
./tools/dist_launch.sh main_seg.py /path/to/config $NUM_GPUS --resume /path/to/checkpoint
./tools/dist_launch.sh main_seg.py /path/to/config $NUM_GPUS --resume /path/to/checkpoint --opts evaluate.seg.cfg segmentation/configs/_base_/datasets/pascal_context.py
./tools/dist_launch.sh main_seg.py /path/to/config $NUM_GPUS --resume /path/to/checkpoint --opts evaluate.seg.cfg segmentation/configs/_base_/datasets/coco.py