# ------------------------------------------------------------------------- # MIT License # # Copyright (c) 2021 OpenAI # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Modified by Jiarui Xu # ------------------------------------------------------------------------- from collections import OrderedDict import torch from torch import nn class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) self.mlp = nn.Sequential( OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)), ('gelu', QuickGELU()), ('c_proj', nn.Linear(d_model * 4, d_model))])) self.ln_2 = nn.LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor, key_padding_mask: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask, key_padding_mask=key_padding_mask)[0] def forward(self, x: torch.Tensor, key_padding_mask=None): x = x + self.attention(self.ln_1(x), key_padding_mask=key_padding_mask) x = x + self.mlp(self.ln_2(x)) return x